Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging.

نویسندگان

  • Séverine Le Gac
  • Istvan Vermes
  • Albert van den Berg
چکیده

Quantum dots (Qdots) are nanoparticles exhibiting fluorescent properties that can be used for cell staining. We present here the development of quantum dots conjugated to Annexin V for specific targeting of apoptotic cells, for both apoptosis detection and staining of apoptotic "living" cells. For that purpose, Qdots Streptavidin Conjugates are coupled to biotinylated Annexin V, a 35-kDa protein which specifically recognizes and binds to phosphatidylserine (PS) moieties present on the outer membrane of apoptotic cells and not on healthy or necrotic cells. By using Annexin V, our Qdots probes are made specific for apoptotic cells. Staining of apoptotic cells was checked using fluorescence and confocal microscopy techniques and nonfixed cells. It is shown here that Qdots are insensitive to bleaching after prolonged exposure as opposed to organic dyes. This makes Qdots excellent candidates to continuously follow fast changes occurring at the membrane of apoptotic cells and facilitates time-lapse imaging as they alleviate any bleaching issue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo Effects of CdSe Injection on Embryonic Development of Reproductive System

The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. Therefore, the cytotoxic effects of CdSe quantum dots on embryonic devel...

متن کامل

In vivo Effects of CdSe Injection on Embryonic Development of Reproductive System

The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. Therefore, the cytotoxic effects of CdSe quantum dots on embryonic devel...

متن کامل

Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells.

Apoptosis, or programmed cell death, plays an important role in the etiology of a variety of diseases, including cancer. Visualization of apoptosis would allow both early detection of therapy efficiency and evaluation of disease progression. To that aim we developed a novel annexin A5-conjugated bimodal nanoparticle. The nanoparticle is composed of a quantum dot that is encapsulated in a parama...

متن کامل

SPIO-Annexin V, a potential probe for MRI detection of radiation induced apoptosis

Background: Finding a suitable method for rapid, accurate and reliable estimation of absorbed dose has high priority in management of the radiation exposed persons. Shortly after radiation exposure, apoptosis is a major detriment in proliferative tissues such as the hematopoietic system. Therefore, quantification of apoptosis in these tissues could be useful for rapid estimation of radiation ex...

متن کامل

Annexin-V/quantum dot probes for multimodal apoptosis monitoring in living cells: improving bioanalysis using electrochemistry.

There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2006